| Course<br>Type | Course<br>Code | Name of Course | L | Т | P | Credit |
|----------------|----------------|----------------|---|---|---|--------|
| DE             | NMCD520        | Graph Theory   | 3 | 0 | 0 | 3      |

## **Course Objective**

• The objective of the course is to introduce the concepts of graph theory in depth and different structural parameters of graphs.

## **Learning Outcomes**

Upon successful completion of this course, students will:

- · have a broad understanding of the concepts, applications of graph theory in detail.
- have an ability to think and model different practical problems as graph theoretic problems.

| Unit<br>No. | Topics to be Covered                                                                                                                                                                                                                                                                                                                                                                                  | Contact<br>Hours | Learning Outcome                                                                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Introduction to graphs, trees and their properties: Graphs, Representation of Graphs, Various Special Graphs, Walk, Path, Trail, Degree Sequence of Graphs, Graph Isomorphism, Trees and its characterizations, Spanning Trees, Counting Spanning trees, Algorithms for minimum weighted spanning trees.                                                                                              | 12               | Students will learn the basic definitions and concepts on graphs such as graphs, graph isomorphism, and trees.                                                               |
| 2           | Matching and Cycles in Graphs: Matching, Perfect matching, Augmenting path, Bipartite matching, Hall Marriage Theorem, Matching in general graphs, Tutte's Theorem, Min-Max Theorems, Konig-Egervary Theorem, Eulerian tour and Seven Bridges problem, Hamiltonian cycles and Travelling Salesman Problem, Necessary Conditions for Hamiltonian Graphs, Sufficient Conditions for Hamiltonian Graphs. | 08               | This unit will help the students in understanding the graph parameters such as matching, Hamiltonian cycles, Eulerian cycles with their necessary and sufficient conditions. |
| 3           | Coloring and Connectivity in graphs: Vertex Coloring, Edge Coloring, Brook's theorem, Vizing Conjecture. Vertex and Edge Connectivity, Vertex- and edge-disjoint paths, testing connectivity, decomposing connected graph into blocks, Tutte's decomposition, edge-connectivity, Menger's Theorem.                                                                                                    | 09               | This will help in understanding coloring, connectivity, and important theorems such as Tutte's theorem and Menger's theorem.                                                 |
| 4           | <b>Network Flows:</b> Basic concepts on flows and networks, max-flow min-cut theorem, Ford-Fulkerson algorithm.                                                                                                                                                                                                                                                                                       | 07               | Students will learn the concepts of network flows.                                                                                                                           |
| 5           | Planarity in graphs: Planar graphs, Euler's Formula, Outer Planar Graphs, Kuratowski Theorem, Four Color Theorem.                                                                                                                                                                                                                                                                                     | 06               | Students will learn the famous Four Color Theorem along with the concepts used in Four Color Theorem.                                                                        |
| Total       |                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                                                                                              |

## **Text Books:**

1. D. B. West, Introduction to graph theory, 2nd Edition, Pearson Education, 2015.

## Reference.

- 1. A. Bondy and U. S. R. Murthy, Graph Theory, Graduate Texts In Mathematics, Springer, 2008
- 2. R. Diestal, Graph Theory, Springer-Verlag, New York, 2000